A wave is a disturbance that propagates through space and time, usually with transference of energy. A mechanical wave is a wave that propagates or travels through a medium due to the restoring forces it produces upon deformation. There also exist waves capable of traveling through a vacuum, including electromagnetic radiation and probably gravitational radiation. Waves travel and transfer energy from one point to another, often with no permanent displacement of the particles of the medium (that is, with little or no associated mass transport); they consist instead of oscillations or vibrations around almost fixed locations.
Other properties, however, although they are usually described in an origin-specific manner, may be generalized to all waves. For such reasons, wave theory represents a particular branch of physics that is concerned with the properties of wave processes independently from their physical origin.For example, based on the mechanical origin of acoustic waves there can be a moving disturbance in space–time if and only if the medium involved is neither infinitely stiff nor infinitely pliable. If all the parts making up a medium were rigidly bound, then they would all vibrate as one, with no delay in the transmission of the vibration and therefore no wave motion. On the other hand, if all the parts were independent, then there would not be any transmission of the vibration and again, no wave motion. Although the above statements are meaningless in the case of waves that do not require a medium, they reveal a characteristic that is relevant to all waves regardless of origin: within a wave, the phase of a vibration (that is, its position within the vibration cycle) is different for adjacent points in space because the vibration reaches these points at different times.
0 comments:
Post a Comment